(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
half(0) → 0
half(s(0)) → 0
half(s(s(x))) → s(half(x))
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
inc(s(x)) → s(inc(x))
inc(0) → s(0)
logarithm(x) → logIter(x, 0)
logIter(x, y) → if(le(s(0), x), le(s(s(0)), x), half(x), inc(y))
if(false, b, x, y) → logZeroError
if(true, false, x, s(y)) → y
if(true, true, x, y) → logIter(x, y)
f → g
f → h
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
half(0') → 0'
half(s(0')) → 0'
half(s(s(x))) → s(half(x))
le(0', y) → true
le(s(x), 0') → false
le(s(x), s(y)) → le(x, y)
inc(s(x)) → s(inc(x))
inc(0') → s(0')
logarithm(x) → logIter(x, 0')
logIter(x, y) → if(le(s(0'), x), le(s(s(0')), x), half(x), inc(y))
if(false, b, x, y) → logZeroError
if(true, false, x, s(y)) → y
if(true, true, x, y) → logIter(x, y)
f → g
f → h
S is empty.
Rewrite Strategy: INNERMOST
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
Innermost TRS:
Rules:
half(0') → 0'
half(s(0')) → 0'
half(s(s(x))) → s(half(x))
le(0', y) → true
le(s(x), 0') → false
le(s(x), s(y)) → le(x, y)
inc(s(x)) → s(inc(x))
inc(0') → s(0')
logarithm(x) → logIter(x, 0')
logIter(x, y) → if(le(s(0'), x), le(s(s(0')), x), half(x), inc(y))
if(false, b, x, y) → logZeroError
if(true, false, x, s(y)) → y
if(true, true, x, y) → logIter(x, y)
f → g
f → h
Types:
half :: 0':s:logZeroError → 0':s:logZeroError
0' :: 0':s:logZeroError
s :: 0':s:logZeroError → 0':s:logZeroError
le :: 0':s:logZeroError → 0':s:logZeroError → true:false
true :: true:false
false :: true:false
inc :: 0':s:logZeroError → 0':s:logZeroError
logarithm :: 0':s:logZeroError → 0':s:logZeroError
logIter :: 0':s:logZeroError → 0':s:logZeroError → 0':s:logZeroError
if :: true:false → true:false → 0':s:logZeroError → 0':s:logZeroError → 0':s:logZeroError
logZeroError :: 0':s:logZeroError
f :: g:h
g :: g:h
h :: g:h
hole_0':s:logZeroError1_0 :: 0':s:logZeroError
hole_true:false2_0 :: true:false
hole_g:h3_0 :: g:h
gen_0':s:logZeroError4_0 :: Nat → 0':s:logZeroError
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
half,
le,
inc,
logIterThey will be analysed ascendingly in the following order:
half < logIter
le < logIter
inc < logIter
(6) Obligation:
Innermost TRS:
Rules:
half(
0') →
0'half(
s(
0')) →
0'half(
s(
s(
x))) →
s(
half(
x))
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
inc(
s(
x)) →
s(
inc(
x))
inc(
0') →
s(
0')
logarithm(
x) →
logIter(
x,
0')
logIter(
x,
y) →
if(
le(
s(
0'),
x),
le(
s(
s(
0')),
x),
half(
x),
inc(
y))
if(
false,
b,
x,
y) →
logZeroErrorif(
true,
false,
x,
s(
y)) →
yif(
true,
true,
x,
y) →
logIter(
x,
y)
f →
gf →
hTypes:
half :: 0':s:logZeroError → 0':s:logZeroError
0' :: 0':s:logZeroError
s :: 0':s:logZeroError → 0':s:logZeroError
le :: 0':s:logZeroError → 0':s:logZeroError → true:false
true :: true:false
false :: true:false
inc :: 0':s:logZeroError → 0':s:logZeroError
logarithm :: 0':s:logZeroError → 0':s:logZeroError
logIter :: 0':s:logZeroError → 0':s:logZeroError → 0':s:logZeroError
if :: true:false → true:false → 0':s:logZeroError → 0':s:logZeroError → 0':s:logZeroError
logZeroError :: 0':s:logZeroError
f :: g:h
g :: g:h
h :: g:h
hole_0':s:logZeroError1_0 :: 0':s:logZeroError
hole_true:false2_0 :: true:false
hole_g:h3_0 :: g:h
gen_0':s:logZeroError4_0 :: Nat → 0':s:logZeroError
Generator Equations:
gen_0':s:logZeroError4_0(0) ⇔ 0'
gen_0':s:logZeroError4_0(+(x, 1)) ⇔ s(gen_0':s:logZeroError4_0(x))
The following defined symbols remain to be analysed:
half, le, inc, logIter
They will be analysed ascendingly in the following order:
half < logIter
le < logIter
inc < logIter
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
half(
gen_0':s:logZeroError4_0(
*(
2,
n6_0))) →
gen_0':s:logZeroError4_0(
n6_0), rt ∈ Ω(1 + n6
0)
Induction Base:
half(gen_0':s:logZeroError4_0(*(2, 0))) →RΩ(1)
0'
Induction Step:
half(gen_0':s:logZeroError4_0(*(2, +(n6_0, 1)))) →RΩ(1)
s(half(gen_0':s:logZeroError4_0(*(2, n6_0)))) →IH
s(gen_0':s:logZeroError4_0(c7_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
Innermost TRS:
Rules:
half(
0') →
0'half(
s(
0')) →
0'half(
s(
s(
x))) →
s(
half(
x))
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
inc(
s(
x)) →
s(
inc(
x))
inc(
0') →
s(
0')
logarithm(
x) →
logIter(
x,
0')
logIter(
x,
y) →
if(
le(
s(
0'),
x),
le(
s(
s(
0')),
x),
half(
x),
inc(
y))
if(
false,
b,
x,
y) →
logZeroErrorif(
true,
false,
x,
s(
y)) →
yif(
true,
true,
x,
y) →
logIter(
x,
y)
f →
gf →
hTypes:
half :: 0':s:logZeroError → 0':s:logZeroError
0' :: 0':s:logZeroError
s :: 0':s:logZeroError → 0':s:logZeroError
le :: 0':s:logZeroError → 0':s:logZeroError → true:false
true :: true:false
false :: true:false
inc :: 0':s:logZeroError → 0':s:logZeroError
logarithm :: 0':s:logZeroError → 0':s:logZeroError
logIter :: 0':s:logZeroError → 0':s:logZeroError → 0':s:logZeroError
if :: true:false → true:false → 0':s:logZeroError → 0':s:logZeroError → 0':s:logZeroError
logZeroError :: 0':s:logZeroError
f :: g:h
g :: g:h
h :: g:h
hole_0':s:logZeroError1_0 :: 0':s:logZeroError
hole_true:false2_0 :: true:false
hole_g:h3_0 :: g:h
gen_0':s:logZeroError4_0 :: Nat → 0':s:logZeroError
Lemmas:
half(gen_0':s:logZeroError4_0(*(2, n6_0))) → gen_0':s:logZeroError4_0(n6_0), rt ∈ Ω(1 + n60)
Generator Equations:
gen_0':s:logZeroError4_0(0) ⇔ 0'
gen_0':s:logZeroError4_0(+(x, 1)) ⇔ s(gen_0':s:logZeroError4_0(x))
The following defined symbols remain to be analysed:
le, inc, logIter
They will be analysed ascendingly in the following order:
le < logIter
inc < logIter
(10) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
le(
gen_0':s:logZeroError4_0(
n360_0),
gen_0':s:logZeroError4_0(
n360_0)) →
true, rt ∈ Ω(1 + n360
0)
Induction Base:
le(gen_0':s:logZeroError4_0(0), gen_0':s:logZeroError4_0(0)) →RΩ(1)
true
Induction Step:
le(gen_0':s:logZeroError4_0(+(n360_0, 1)), gen_0':s:logZeroError4_0(+(n360_0, 1))) →RΩ(1)
le(gen_0':s:logZeroError4_0(n360_0), gen_0':s:logZeroError4_0(n360_0)) →IH
true
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(11) Complex Obligation (BEST)
(12) Obligation:
Innermost TRS:
Rules:
half(
0') →
0'half(
s(
0')) →
0'half(
s(
s(
x))) →
s(
half(
x))
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
inc(
s(
x)) →
s(
inc(
x))
inc(
0') →
s(
0')
logarithm(
x) →
logIter(
x,
0')
logIter(
x,
y) →
if(
le(
s(
0'),
x),
le(
s(
s(
0')),
x),
half(
x),
inc(
y))
if(
false,
b,
x,
y) →
logZeroErrorif(
true,
false,
x,
s(
y)) →
yif(
true,
true,
x,
y) →
logIter(
x,
y)
f →
gf →
hTypes:
half :: 0':s:logZeroError → 0':s:logZeroError
0' :: 0':s:logZeroError
s :: 0':s:logZeroError → 0':s:logZeroError
le :: 0':s:logZeroError → 0':s:logZeroError → true:false
true :: true:false
false :: true:false
inc :: 0':s:logZeroError → 0':s:logZeroError
logarithm :: 0':s:logZeroError → 0':s:logZeroError
logIter :: 0':s:logZeroError → 0':s:logZeroError → 0':s:logZeroError
if :: true:false → true:false → 0':s:logZeroError → 0':s:logZeroError → 0':s:logZeroError
logZeroError :: 0':s:logZeroError
f :: g:h
g :: g:h
h :: g:h
hole_0':s:logZeroError1_0 :: 0':s:logZeroError
hole_true:false2_0 :: true:false
hole_g:h3_0 :: g:h
gen_0':s:logZeroError4_0 :: Nat → 0':s:logZeroError
Lemmas:
half(gen_0':s:logZeroError4_0(*(2, n6_0))) → gen_0':s:logZeroError4_0(n6_0), rt ∈ Ω(1 + n60)
le(gen_0':s:logZeroError4_0(n360_0), gen_0':s:logZeroError4_0(n360_0)) → true, rt ∈ Ω(1 + n3600)
Generator Equations:
gen_0':s:logZeroError4_0(0) ⇔ 0'
gen_0':s:logZeroError4_0(+(x, 1)) ⇔ s(gen_0':s:logZeroError4_0(x))
The following defined symbols remain to be analysed:
inc, logIter
They will be analysed ascendingly in the following order:
inc < logIter
(13) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
inc(
gen_0':s:logZeroError4_0(
n727_0)) →
gen_0':s:logZeroError4_0(
+(
1,
n727_0)), rt ∈ Ω(1 + n727
0)
Induction Base:
inc(gen_0':s:logZeroError4_0(0)) →RΩ(1)
s(0')
Induction Step:
inc(gen_0':s:logZeroError4_0(+(n727_0, 1))) →RΩ(1)
s(inc(gen_0':s:logZeroError4_0(n727_0))) →IH
s(gen_0':s:logZeroError4_0(+(1, c728_0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(14) Complex Obligation (BEST)
(15) Obligation:
Innermost TRS:
Rules:
half(
0') →
0'half(
s(
0')) →
0'half(
s(
s(
x))) →
s(
half(
x))
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
inc(
s(
x)) →
s(
inc(
x))
inc(
0') →
s(
0')
logarithm(
x) →
logIter(
x,
0')
logIter(
x,
y) →
if(
le(
s(
0'),
x),
le(
s(
s(
0')),
x),
half(
x),
inc(
y))
if(
false,
b,
x,
y) →
logZeroErrorif(
true,
false,
x,
s(
y)) →
yif(
true,
true,
x,
y) →
logIter(
x,
y)
f →
gf →
hTypes:
half :: 0':s:logZeroError → 0':s:logZeroError
0' :: 0':s:logZeroError
s :: 0':s:logZeroError → 0':s:logZeroError
le :: 0':s:logZeroError → 0':s:logZeroError → true:false
true :: true:false
false :: true:false
inc :: 0':s:logZeroError → 0':s:logZeroError
logarithm :: 0':s:logZeroError → 0':s:logZeroError
logIter :: 0':s:logZeroError → 0':s:logZeroError → 0':s:logZeroError
if :: true:false → true:false → 0':s:logZeroError → 0':s:logZeroError → 0':s:logZeroError
logZeroError :: 0':s:logZeroError
f :: g:h
g :: g:h
h :: g:h
hole_0':s:logZeroError1_0 :: 0':s:logZeroError
hole_true:false2_0 :: true:false
hole_g:h3_0 :: g:h
gen_0':s:logZeroError4_0 :: Nat → 0':s:logZeroError
Lemmas:
half(gen_0':s:logZeroError4_0(*(2, n6_0))) → gen_0':s:logZeroError4_0(n6_0), rt ∈ Ω(1 + n60)
le(gen_0':s:logZeroError4_0(n360_0), gen_0':s:logZeroError4_0(n360_0)) → true, rt ∈ Ω(1 + n3600)
inc(gen_0':s:logZeroError4_0(n727_0)) → gen_0':s:logZeroError4_0(+(1, n727_0)), rt ∈ Ω(1 + n7270)
Generator Equations:
gen_0':s:logZeroError4_0(0) ⇔ 0'
gen_0':s:logZeroError4_0(+(x, 1)) ⇔ s(gen_0':s:logZeroError4_0(x))
The following defined symbols remain to be analysed:
logIter
(16) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol logIter.
(17) Obligation:
Innermost TRS:
Rules:
half(
0') →
0'half(
s(
0')) →
0'half(
s(
s(
x))) →
s(
half(
x))
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
inc(
s(
x)) →
s(
inc(
x))
inc(
0') →
s(
0')
logarithm(
x) →
logIter(
x,
0')
logIter(
x,
y) →
if(
le(
s(
0'),
x),
le(
s(
s(
0')),
x),
half(
x),
inc(
y))
if(
false,
b,
x,
y) →
logZeroErrorif(
true,
false,
x,
s(
y)) →
yif(
true,
true,
x,
y) →
logIter(
x,
y)
f →
gf →
hTypes:
half :: 0':s:logZeroError → 0':s:logZeroError
0' :: 0':s:logZeroError
s :: 0':s:logZeroError → 0':s:logZeroError
le :: 0':s:logZeroError → 0':s:logZeroError → true:false
true :: true:false
false :: true:false
inc :: 0':s:logZeroError → 0':s:logZeroError
logarithm :: 0':s:logZeroError → 0':s:logZeroError
logIter :: 0':s:logZeroError → 0':s:logZeroError → 0':s:logZeroError
if :: true:false → true:false → 0':s:logZeroError → 0':s:logZeroError → 0':s:logZeroError
logZeroError :: 0':s:logZeroError
f :: g:h
g :: g:h
h :: g:h
hole_0':s:logZeroError1_0 :: 0':s:logZeroError
hole_true:false2_0 :: true:false
hole_g:h3_0 :: g:h
gen_0':s:logZeroError4_0 :: Nat → 0':s:logZeroError
Lemmas:
half(gen_0':s:logZeroError4_0(*(2, n6_0))) → gen_0':s:logZeroError4_0(n6_0), rt ∈ Ω(1 + n60)
le(gen_0':s:logZeroError4_0(n360_0), gen_0':s:logZeroError4_0(n360_0)) → true, rt ∈ Ω(1 + n3600)
inc(gen_0':s:logZeroError4_0(n727_0)) → gen_0':s:logZeroError4_0(+(1, n727_0)), rt ∈ Ω(1 + n7270)
Generator Equations:
gen_0':s:logZeroError4_0(0) ⇔ 0'
gen_0':s:logZeroError4_0(+(x, 1)) ⇔ s(gen_0':s:logZeroError4_0(x))
No more defined symbols left to analyse.
(18) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
half(gen_0':s:logZeroError4_0(*(2, n6_0))) → gen_0':s:logZeroError4_0(n6_0), rt ∈ Ω(1 + n60)
(19) BOUNDS(n^1, INF)
(20) Obligation:
Innermost TRS:
Rules:
half(
0') →
0'half(
s(
0')) →
0'half(
s(
s(
x))) →
s(
half(
x))
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
inc(
s(
x)) →
s(
inc(
x))
inc(
0') →
s(
0')
logarithm(
x) →
logIter(
x,
0')
logIter(
x,
y) →
if(
le(
s(
0'),
x),
le(
s(
s(
0')),
x),
half(
x),
inc(
y))
if(
false,
b,
x,
y) →
logZeroErrorif(
true,
false,
x,
s(
y)) →
yif(
true,
true,
x,
y) →
logIter(
x,
y)
f →
gf →
hTypes:
half :: 0':s:logZeroError → 0':s:logZeroError
0' :: 0':s:logZeroError
s :: 0':s:logZeroError → 0':s:logZeroError
le :: 0':s:logZeroError → 0':s:logZeroError → true:false
true :: true:false
false :: true:false
inc :: 0':s:logZeroError → 0':s:logZeroError
logarithm :: 0':s:logZeroError → 0':s:logZeroError
logIter :: 0':s:logZeroError → 0':s:logZeroError → 0':s:logZeroError
if :: true:false → true:false → 0':s:logZeroError → 0':s:logZeroError → 0':s:logZeroError
logZeroError :: 0':s:logZeroError
f :: g:h
g :: g:h
h :: g:h
hole_0':s:logZeroError1_0 :: 0':s:logZeroError
hole_true:false2_0 :: true:false
hole_g:h3_0 :: g:h
gen_0':s:logZeroError4_0 :: Nat → 0':s:logZeroError
Lemmas:
half(gen_0':s:logZeroError4_0(*(2, n6_0))) → gen_0':s:logZeroError4_0(n6_0), rt ∈ Ω(1 + n60)
le(gen_0':s:logZeroError4_0(n360_0), gen_0':s:logZeroError4_0(n360_0)) → true, rt ∈ Ω(1 + n3600)
inc(gen_0':s:logZeroError4_0(n727_0)) → gen_0':s:logZeroError4_0(+(1, n727_0)), rt ∈ Ω(1 + n7270)
Generator Equations:
gen_0':s:logZeroError4_0(0) ⇔ 0'
gen_0':s:logZeroError4_0(+(x, 1)) ⇔ s(gen_0':s:logZeroError4_0(x))
No more defined symbols left to analyse.
(21) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
half(gen_0':s:logZeroError4_0(*(2, n6_0))) → gen_0':s:logZeroError4_0(n6_0), rt ∈ Ω(1 + n60)
(22) BOUNDS(n^1, INF)
(23) Obligation:
Innermost TRS:
Rules:
half(
0') →
0'half(
s(
0')) →
0'half(
s(
s(
x))) →
s(
half(
x))
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
inc(
s(
x)) →
s(
inc(
x))
inc(
0') →
s(
0')
logarithm(
x) →
logIter(
x,
0')
logIter(
x,
y) →
if(
le(
s(
0'),
x),
le(
s(
s(
0')),
x),
half(
x),
inc(
y))
if(
false,
b,
x,
y) →
logZeroErrorif(
true,
false,
x,
s(
y)) →
yif(
true,
true,
x,
y) →
logIter(
x,
y)
f →
gf →
hTypes:
half :: 0':s:logZeroError → 0':s:logZeroError
0' :: 0':s:logZeroError
s :: 0':s:logZeroError → 0':s:logZeroError
le :: 0':s:logZeroError → 0':s:logZeroError → true:false
true :: true:false
false :: true:false
inc :: 0':s:logZeroError → 0':s:logZeroError
logarithm :: 0':s:logZeroError → 0':s:logZeroError
logIter :: 0':s:logZeroError → 0':s:logZeroError → 0':s:logZeroError
if :: true:false → true:false → 0':s:logZeroError → 0':s:logZeroError → 0':s:logZeroError
logZeroError :: 0':s:logZeroError
f :: g:h
g :: g:h
h :: g:h
hole_0':s:logZeroError1_0 :: 0':s:logZeroError
hole_true:false2_0 :: true:false
hole_g:h3_0 :: g:h
gen_0':s:logZeroError4_0 :: Nat → 0':s:logZeroError
Lemmas:
half(gen_0':s:logZeroError4_0(*(2, n6_0))) → gen_0':s:logZeroError4_0(n6_0), rt ∈ Ω(1 + n60)
le(gen_0':s:logZeroError4_0(n360_0), gen_0':s:logZeroError4_0(n360_0)) → true, rt ∈ Ω(1 + n3600)
Generator Equations:
gen_0':s:logZeroError4_0(0) ⇔ 0'
gen_0':s:logZeroError4_0(+(x, 1)) ⇔ s(gen_0':s:logZeroError4_0(x))
No more defined symbols left to analyse.
(24) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
half(gen_0':s:logZeroError4_0(*(2, n6_0))) → gen_0':s:logZeroError4_0(n6_0), rt ∈ Ω(1 + n60)
(25) BOUNDS(n^1, INF)
(26) Obligation:
Innermost TRS:
Rules:
half(
0') →
0'half(
s(
0')) →
0'half(
s(
s(
x))) →
s(
half(
x))
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
inc(
s(
x)) →
s(
inc(
x))
inc(
0') →
s(
0')
logarithm(
x) →
logIter(
x,
0')
logIter(
x,
y) →
if(
le(
s(
0'),
x),
le(
s(
s(
0')),
x),
half(
x),
inc(
y))
if(
false,
b,
x,
y) →
logZeroErrorif(
true,
false,
x,
s(
y)) →
yif(
true,
true,
x,
y) →
logIter(
x,
y)
f →
gf →
hTypes:
half :: 0':s:logZeroError → 0':s:logZeroError
0' :: 0':s:logZeroError
s :: 0':s:logZeroError → 0':s:logZeroError
le :: 0':s:logZeroError → 0':s:logZeroError → true:false
true :: true:false
false :: true:false
inc :: 0':s:logZeroError → 0':s:logZeroError
logarithm :: 0':s:logZeroError → 0':s:logZeroError
logIter :: 0':s:logZeroError → 0':s:logZeroError → 0':s:logZeroError
if :: true:false → true:false → 0':s:logZeroError → 0':s:logZeroError → 0':s:logZeroError
logZeroError :: 0':s:logZeroError
f :: g:h
g :: g:h
h :: g:h
hole_0':s:logZeroError1_0 :: 0':s:logZeroError
hole_true:false2_0 :: true:false
hole_g:h3_0 :: g:h
gen_0':s:logZeroError4_0 :: Nat → 0':s:logZeroError
Lemmas:
half(gen_0':s:logZeroError4_0(*(2, n6_0))) → gen_0':s:logZeroError4_0(n6_0), rt ∈ Ω(1 + n60)
Generator Equations:
gen_0':s:logZeroError4_0(0) ⇔ 0'
gen_0':s:logZeroError4_0(+(x, 1)) ⇔ s(gen_0':s:logZeroError4_0(x))
No more defined symbols left to analyse.
(27) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
half(gen_0':s:logZeroError4_0(*(2, n6_0))) → gen_0':s:logZeroError4_0(n6_0), rt ∈ Ω(1 + n60)
(28) BOUNDS(n^1, INF)